Experimental Verification of a Consequent-Pole Magnetic Lead Screw

Tetsuya Abe* Akira Heya Yoshihiro Nakata
Katsuhiro Hirata Hiroshi Ishiguro
Contents

- Background

- Consequent-pole magnetic lead screw
 - Basic structure
 - Operating principle

- Prototype development
 - Static force analysis
 - Prototype

- Experiment
 - Static force measurement
 - Verification of CPMLS’s motion

- Conclusion & Future works
Contents

- Background
 - Consequent-pole magnetic lead screw
 - Basic structure
 - Operating principle
 - Prototype development
 - Static force analysis
 - Prototype
- Experiment
 - Static force measurement
 - Verification of CPMLS’s motion
- Conclusion & Future works
Category and characteristics of feed screw

<table>
<thead>
<tr>
<th>Force transmission</th>
<th>Surface contact</th>
<th>Point contact</th>
<th>Hydrostatic oil</th>
<th>Magnetic coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sliding screw *1</td>
<td>Large</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ball screw *2</td>
<td></td>
<td>Large</td>
<td></td>
<td>Small</td>
</tr>
<tr>
<td>Hydrostatic feed screw *3</td>
<td>Small</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic lead screw (MLS)</td>
<td></td>
<td></td>
<td></td>
<td>Large</td>
</tr>
</tbody>
</table>

- **Issue in feed screw**
 - Mechanical contact causes ...
 - noise and heat
 - particle emission

*1: NTN, Sliding screw for high load
*2: Tohokuseiko corp., Ball screw
*3: TOSHIBA MACHINE, Hydrostatic Feed Drive and Assembly Technologies
Category and characteristics of feed screw

<table>
<thead>
<tr>
<th>Force transmission</th>
<th>Surface contact</th>
<th>Point contact</th>
<th>Hydrostatic oil</th>
<th>Magnetic coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction</td>
<td>Large</td>
<td>Small</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Small</td>
<td>Large</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Sliding screw**
 - Large friction
 - Small efficiency

- **Ball screw**
 - Small friction
 - Large efficiency

- **Hydrostatic feed screw**
 - Large friction

- **Magnetic lead screw (MLS)**
 - Small friction

Issue in feed screw

- Magnetic lead screw can convert rotary to linear motion without mechanical contact

*1: NTN, Sliding screw for high load
*2: Tohokuseiko corp., Ball screw
*3: TOSHIBA MACHINE, Hydrostatic Feed Drive and Assembly Technologies
What is magnetic lead screw?

- Rotary-to-linear convertor without mechanical contact

Advantages due to non-mechanical contact ...
- Low noise and heat
- Few particle emission
- No lubrication
Category and characteristics of MLS

(a) Spiral SPM type MLS
(b) Discrete spiral SPM type MLS
(c) IPM type MLS

Issue in MLS
- Complicated structure
- Difficult to guarantee air gap length between the nut and screw

(a) J. Wang et al., “Analysis of a Magnetic Screw for High Force Density Linear Electromagnetic Actuators” (2011)
(b) Z. Ling et al., “Design of a New Magnetic Screw With Discretized PMs” (2016)
(c) A. Heya et al., “Force Estimation Method for a Magnetic Lead-Screw-Driven Linear Actuator” (2018)
Purpose

Consequent-pole magnetic lead screw (CPMLS)

Magnetic nut

Arc-shape PM

Purpose: Experimental verification of a consequent-pole magnetic lead screw
Contents

- Background

- Consequent-pole magnetic lead screw
 - Basic structure
 - Operating principle

- Prototype development
 - Static force analysis
 - Prototype

- Experiment
 - Static force measurement
 - Verification of CPMLS’s motion

- Conclusion & Future works
Basic structure

IPM type MLS (Conventional)
- PMs and magnetic poles are stacked in radial direction
 - Difficult to guarantee air gap length
 - Large number of parts

Consequent-pole type MLS (Proposed)
- Introduced Consequent-pole (PMs and magnetic poles are separated)
 - Easy to guarantee air gap length
 - Reduced number of parts

Magnetization direction
Basic structure

IPM type MLS (Conventional)
- PMs and magnetic poles are stacked in radial direction
 ➡️ Difficult to guarantee air gap length
 ➡️ Large number of parts

Consequent-pole type MLS (Proposed)
- Introduced Consequent-pole (PMs and magnetic poles are separated)
 ➡️ Easy to guarantee air gap length
 ➡️ Reduced number of parts

- PMs and magnetic poles are stacked in radial direction
- Difficult to guarantee air gap length
- Large number of parts

- Introduced Consequent-pole (PMs and magnetic poles are separated)
- Easy to guarantee air gap length
- Reduced number of parts
Operating principle

Nut is driven by F that is dependent on φ_θ or φ_l

\[F = F_r(\varphi_l(\theta_s, l_n)) \]

Magnetic attraction force

Translational magnetic phase difference

\[\varphi_l(\theta_s, l_n) = l_n - l_s, \quad l_s = \frac{L}{2\pi} \theta_s \]

Rotational magnetic phase difference

\[\varphi_\theta(\theta_s, l_n) = \theta_s - \theta_n, \quad \theta_n = \frac{2\pi}{L} l_n \]
Contents

- Background

- Consequent-pole magnetic lead screw
 - Basic structure
 - Operating principle

- Prototype development
 - Static force analysis
 - prototype

- Experiment
 - Static force measurement
 - Verification of CPMLS’s motion

- Conclusion & Future works
Parameters of Consequent-pole MLS (CPMLS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nut</th>
<th>Screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer diameter [mm]</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>Inner diameter [mm]</td>
<td>10.5</td>
<td>×</td>
</tr>
<tr>
<td>Number of pole pairs</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Air gap length [mm]</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Length [mm]</td>
<td>20</td>
<td>144</td>
</tr>
<tr>
<td>Material</td>
<td>SUY</td>
<td></td>
</tr>
<tr>
<td>Permanent magnet</td>
<td>Br = 1.2 T (N40SH)</td>
<td></td>
</tr>
</tbody>
</table>
Analysis condition

Calculates static force applied to nut when screw is rotated with nut fixed

- Rotation angle $\theta_s : 0 \sim 360$ deg

<table>
<thead>
<tr>
<th>Analysis condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
</tr>
<tr>
<td>Intel(R)Core(TM)i7-3770T CPU@2.50GHz</td>
</tr>
<tr>
<td>Number of elements</td>
</tr>
<tr>
<td>Number of nodes</td>
</tr>
<tr>
<td>Calculating time (min/step)</td>
</tr>
</tbody>
</table>
Analysis result

Calculates static force applied to nut when screw is rotated with nut fixed

- Maximum static force : 8.7 N

Rotational magnetic phase difference

\[\varphi_\theta(\theta_s, l_n) = \theta_s - \theta_n, \ \theta_n = 0 \]
Prototype

- Spacers were arranged between PMs and magnetic poles
- Air gap is held by an oil-less bearing
Contents

- Background
- Consequent-pole magnetic lead screw
 - Basic structure
 - Operating principle
- Prototype development
 - Static force analysis
 - prototype
- Experiment
 - Static force measurement
 - Verification of CPMLS’s motion
- Conclusion & Future works
Experimental setup

Measure static force applied to nut when nut is moved with screw fixed
Experimental result

Measure static force applied to nut when nut is moved with screw fixed

- Maximum static force: 8.6 N

Rotational magnetic phase difference

\[\varphi_\theta(\theta_s, \theta_n) = \theta_s - \theta_n, \quad \theta_s = 0, \quad \theta_n = \frac{2\pi L}{l_n} \]
Contents

- Background

- Consequent-pole magnetic lead screw
 - Basic structure
 - Operating principle

- Prototype development
 - Static force analysis
 - Prototype

- Experiment
 - Static force measurement
 - Verification of CPMLS’s motion

- Conclusion & Future works
Experimental setup

- PID controller was used for a position feedback control
- Target position: 8 mm (The pitch of the screw is 4 mm)
Experimental result

Position feedback control
Target position : 8 mm (The pitch of the screw is 4 mm)

Displacement of the nut : 7.99 mm
Angle of the screw : -715.7 deg.

Steady-state deviation : 0.01 mm

Position feedback control could be performed
Contents

- Background

- Consequent-pole magnetic lead screw
 - Basic structure
 - Operating principle

- Prototype development
 - Static force analysis
 - Prototype

- Experiment
 - Static force measurement
 - Verification of CPMLS’s motion

- Conclusion & Future works
Conclusion & Future works

Conclusion

• Showed measured and calculated static forces

• Investigated that proposed MLS can work as lead screw

Future works

• Further research is required to clarify the dynamic characteristics of consequent-pole magnetic lead screw

Thank you for your attention!