Analysis of Core Materials Characteristics of Non-Contact Linear Position Sensor on Impedance Characteristics

Intelligent Actuators and Sensors Laboratory

Department of Adaptive Machine Systems, Osaka University, Osaka, 565-0871, Japan Tel: +81-6-6879-7553, Fax: +81-6-6879-7553

INTRODUCTION

The mechanical contact type potentiometer that has been conventionally used as a position sensor is pointed out the problems of contact reliability, life time, and so on.

We are developing the non-contact magnetic position sensor using impedance change according to the displacement.

The magnetization characteristics of a core material greatly influence the impedance of coil, especially in high frequency. Therefore, it is effective to clarify the impedance characteristics by the 3-D finite element analysis.

We analyze the AC magnetization characteristics of various core materials used for a position sensor using 3-D FEM which taken into account the complex permeability. Moreover, the influence of the permeability and the electric conductivity of various kinds of core materials on the impedance characteristics of a linear position sensor are clarified, and the suitable core material for this sensor is discussed. The validity of the method is clarified through the comparison with the measurement.

VERIFICATION of CORE MATERIAL CHARACTERISTICS

SPECIFICATIONS of CORE MATERIALS

	SUS430		SUY		
Material	Block	Lamination	Block	Lamination	
Complex Permeability μ	246- <i>j</i> 12	201 <i>—j</i> 1.58	531 <i>—j</i> 119	406- <i>j</i> 19	
Conductivity σ (S/m)	1.40 x 10 ⁶		9.00 x 10 ⁶		
Matarial	78Permalloy		SMC		
Material	Block	Lamination	Block	Lamination	
Complex Permeability μ	11482 <i>—j</i> 1248	9346 <i>—j</i> 879	104 <i>—j</i> 1.7	_	
Conductivity σ (S/m)	1.82 x 10 ⁶		0.5		
SUS430	SUY	78Pe	rmalloy	SMC	
$300 \qquad $	μ' μ'' } Measur		$\frac{\mu'}{\mu''} \} \text{ Measured}$		

A. Magnetic Filed Analysis by FEM

The fundamental equation of the magnetic J_0 : the exciting current density field can be indicated in frequency domain as J_{ρ} : the eddy current density follows.

$$\begin{cases} \operatorname{rot}(\dot{v}\operatorname{rot}\dot{A}) = \dot{J}_0 + \dot{J}_e = \dot{J}_0 - \sigma(j\omega\dot{A} + \operatorname{grad}\dot{\phi}) \\ \operatorname{div}\dot{J}_e = 0 \end{cases}$$

B. Coupled Analysis with Electric Circuit The electric circuit equation is coupled with the magnetic field equation.

 $\dot{V}_0 = R\dot{I}_0 + j\omega\dot{\psi}$

- \dot{v} : the magnetic reluctivity σ : the electric conductivity ω : the angular frequency : the magnetic vector potential : the electric scalar potential V_0 : the applied voltage *R* : the resistance I_0 : the exciting current
- ψ : the interlinkage flux of exciting coil
- Dot (•) means complex number.

COMPLEX MAGNETIC PERMEABILITY

BASIC THEORY

 $\dot{\mu} = \mu' - j\mu''$

Magnetic field strength is shown in complex number as $H=H_0\cos\omega t$, then magnetic flux density is shown as $B=B_0\cos(\omega t - \theta)$. Here, θ is phase angle. They are expressed as (1) using an exponential function. Magnetic permeability $\dot{\mu}$ is determined as (2) from above H, B.

	Material	Conductivity σ (S/m)	Relative permeability μ_{s}		
Shield case	Aluminum	3.4×10^{7}	1		
Coil	Copper	5.8×10^{7}	1		
Core	Used material properties of BLOCK				

ANALYZED RESULTS oF IMPEDANCE CHARACTERISTICS

HOW TO USE of COMPLEX PERMEABILITY in FEM

The measured real and imaginary part of complex magnetic permeability includes iron loss (eddy current loss and hysteresis loss), especially at high frequency, the influence of the eddy current is large. Therefore, the complex magnetic permeability measured at low frequency has to be used in the analysis because the eddy current is considered in our FEM code.

DISCRETIZATION DATA and CPU TIME

Average Analyzed Time of Each Displacement

	SUS430	MER1F	SUY	78Permalloy	SMC	
Number of Elements	2,360,484	2,874,564	2,911,692	5,242,188	2,064,888	
Number of Nodes	408,690	495,686	502,139	894,338	357,783	
CPU Time (Hours)#	3	5.5	6	39	3	

The analyzed results of SMC entirely show good agreement with the measurement, even though maximum error is approximately 9% at maximum displacement. On the other hand, the analyzed results of SUY shows maximum error about 16% at maximum displacement by comparison with the measurement.

CONCLUSION

We evaluated the effect of core materials on impedance characteristics by means of 3-D finite element method (FEM), which taken into account the complex permeability. The validity of the computation is verified by the comparison with the measurement of a prototype. Furthermore, suitable core material for a position sensor at high frequency is discussed.