Introduction

Linear resonant actuators (LRA) have been used in a wide range of applications,

Advantages; High efficiency, simple structure, easy control, and so on.

Problem; The amplitude severely decreases in response to an external load.

To control this, we proposed PWM feedback control. However, the amplitude measurably decreased against an external load under the control.

The more effective feedback control is investigated using PID control in PWM feedback control to keep the amplitude constant against an external load.

We propose a numerical method to analyze dynamic characteristics of the LRA under PID control in PWM feedback control by the back-EMF detecting from a coil employing 3-D FEM.

Analysis Method

The equations of the magnetic field and the electric circuit are coupled using the 3-D FEM, which are given by the magnetic vector potential A and the exciting current I_0 as follows:

$rot(v rot A) = J_0 + v_0 rot M$	v: the reluctivity J_0 : the exciting current density v_0 : the reluctivity of the vacuum M: the magnetization of permanent magnet
$E = V_0 - RI_0 - \frac{d\Psi}{dt} = 0$	V_0 : the applied voltage R : the resistance ψ : the interlinkage flux of exciting coil
$M\frac{d^2x}{dt^2} + C\frac{dx}{dt} + F_k = F_x$	M : The mass of movers x : The displacement of movers F_x : Trust F_k : Spring force C : Viscous damping coefficient

The thrust of each mover is calculated using the Maxwell stress tensor method.

3-D Finite Element Analysis of Linear Resonance Actuator under PID Control

Katsuhiro Hirata¹, Yasuyoshi Asai¹, ¹ Department of Adaptive Machine Systems, Osaka University, Osaka 565-0871, Japan

IEEE CEFC 2010

IEEE Conference on Electromagnetic Field Computation

May 9-12, 2010 Chicago, IL USA

Under PWM feedback control, the coil is exited in interval (c) according to the duty. Here, the duty is determined by PID control using the back EMF V_1 .

$$dty(\%) = K_{P}e(t) + K_{I}\int e(t)dt + K_{D}\frac{de(t)}{dt}$$

$$t) = V_S - V_1$$

 K_P : The proportional gain K_I : The integral gain K_D : The differential gain e(t): The deviation V_{S} : The target voltage

 $K_P = 1, K_I = 0.05, K_D = 0.5$

 \Rightarrow Both results are well in good agreement. >The amplitude is kept constant under the load of less than 0.8N by PID control. \geq Over the load of 0.8N, the amplitude decreases because its duty becomes nearly 100%.

>A dynamic analysis method of the LRA under PID control in PWM feedback control by the back-EMF detecting from a coil

 \succ The effectiveness of this method was shown by the comparison

 \succ The effectiveness of the feedback control using PID control was