

Experimental Verification

of Disturbance Compensation Control of Linear Resonant Actuator

Masayuki Kato, Katsuhiro Hirata, Yasuyoshi Asai

Introduction

Linear resonant actuator (LRAs) are actuators that reciprocate by alternating currents excitation. ^OSimple structure, easy control, direct drive

Problem

It takes much time until the amplitude of the LRA becomes steady state after it decreases once by external load.

Purpose

- Propose a disturbance compensation control method which controls depression of the amplitude
- Propose a load device which is suitable to the actual LRA
- Verify the proposed control through measurements

Proposed Control

Load Estimation PWM Feedback Control

Load estimation method uses two back-EMF signals: V_1 and V_2 .

Experimental Verification Using Simple LRA

1-Mover LRA and VCM

Load Estimation Results

LRA and VCM are connected. The external load is applied by VCM which is controlled to synchronize with the LRA's construction motion.

Relationship between V1, V2, and external load

The frequency characteristics are measured. As expected, there is little difference in resonant frequency between the single LRA and connected LRA.

Dynamic characteristic is measured when external load is applied. The external load generated by current control is a little delayed. However, the load is roughly synchronized to

LRA's motion.

- We proposed a disturbance compensation control method \bullet which controls decrease in mover amplitude.
- We proposed a new load device which is suitable to the actual LRA.
- The effectiveness of the proposed control was confirmed to compare mover amplitude.

Hirata Laboratory – Intelligent Actuators and Sensors